Modeling of Piezoelectric Actuators Based on Bayesian Regularization Back Propagation Neural Network

نویسندگان

  • Wen Wang
  • Zhu Zhu
  • Yanding Wei
  • Zichen Chen
چکیده

Problem statement: Piezoelectric actuator is a kind of key driving components for micropositioning stages, micropumps, micro valves, micro gripper and so on in the fields of micro/nano technology such as integrated circuit manufacturing, precision instruments, ultra precision fabrication, biomedical manipulation. It has lots of advantages including high stiffness, fast response times, less heat generating, low power consumption and large force output. But the hysteresis nonlinearity seriously affects working performance of actuators. So a lot of models were proposed to describe the hysteresis nonlinearity. A popular model which was widely used is the Preisach model. In order to obtain accurate displacement output corresponding to arbitrary input voltage with the Preisach model, function output approximation is needed. Approach: In this study, firstly the Preisach model was introduced. Then the function modeling of Preisach model based on a Bayesian Regularization Back Propagation Neural (BRBPNN) was presented and a three layers BPNN was designed. Finally, the BRBPNN was trained in Neural Network toolbox of MATLAB6.0. The Preisach function values not at equal diversion points were calculated by the trained network and the actual displacement outputs and theoretical values corresponding to random voltages input were compared. Results: Experimental results indicate that theoretical displacements and measured displacements agree with very well, the maximum displacement error is 0.35μm and the standard deviation is 0.24 μm. Conclusion: The BRBPNN could realize function approximation in Preisach modeling accurately and could meet the precision requirement in the field of modeling and controlling of piezoelectric actuators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Compressive Strength of Metakaolin Based Geopolymers by The Use of Artificial Neural Network RESEARCH NOTE)

In order to study the effect of R2O/Al2O3 (where R=Na or K), SiO2/Al2O3, Na2O/K2O and H2O/R2O molar ratios on the compressive strength (CS) of Metakaolin base geopolymers, more than forty data were gathered from literature. To increase the number of data, some experiments were also designed. The resulted data were utilized to train and test the three layer artificial neural network (ANN). Bayes...

متن کامل

An Optimal Utilization of Cloud Resources using Adaptive Back Propagation Neural Network and Multi-Level Priority Queue Scheduling

With the innovation of cloud computing industry lots of services were provided based on different deployment criteria. Nowadays everyone tries to remain connected and demand maximum utilization of resources with minimum timeand effort. Thus, making it an important challenge in cloud computing for optimum utilization of resources. To overcome this issue, many techniques have been proposed ...

متن کامل

Optimizing of Iron Bioleaching from a Contaminated Kaolin Clay by the Use of Artificial Neural Network

In this research, the amount of Iron removal by bioleaching of a kaolin sample with high iron impurity with Aspergillus niger was optimized. In order to study the effect of initial pH, sucrose and spore concentration on iron, oxalic acid and citric acid concentration, more than twenty experiments were performed. The resulted data were utilized to train, validate and test the two layer artificia...

متن کامل

A Novel Prediction Algorithm of DR Position Error Based on Bayesian Regularization Back-propagation Neural Network

It is difficult to accurately reckon vehicle position for vehicle navigation system (VNS) during GPS outages, a novel prediction algorithm of dead reckon (DR) position error is put forward, which based on Bayesian regularization back-propagation (BRBP) neural network. DR, GPS position data are first denoised and compared at different stationary wavelet transformation (SWT) decomposition level, ...

متن کامل

Estimation of pull-in instability voltage of Euler-Bernoulli micro beam by back propagation artificial neural network

The static pull-in instability of beam-type micro-electromechanical systems is theoretically investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered. Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011